Lecture 8

Synchronous Sequential Logic continue

Outline

Flip Flops Analysis of Clocked Sequential Circuits Design Procedure

Master-Slave D Flip-Flop

Constructed with two D latches and an inverter
The first latch (master) is enabled when CLK=1
It reads the input changes but stops before the second one
The second latch (slave) is enabled when CLK=0
Close the first latch to isolate the input changes
Deliver the final value at the moment just before CLK changes

The circuit samples the D input and changes its output Q only at the **negative-edge of the controlling clock**

Edge-Triggered D Flip-Flop

If only SR latches are available, three latches are required
Two latches are used for locking the two inputs (CLK & D)
The final latch provides the output of the flip-flop

Graphic symbol for edge-triggered D flip-flop

Setup & Hold Times

- The response time of a flip-flop to input changes must be taken into consideration
- Setup Time: The length of time that data must stabilize before the clock transition
 - The maximum data path is used to determine if the setup time is met
- Hold Time: The length of time that data must remain stable at the input pin after the active clock transition
 - The minimum data path is used to determine if hold time is met

Other Flip-Flops

The most economical and efficient flip-flop is the edge-triggered D flip-flop □ It requires the smallest number of gates Other types of flip-flops can be constructed by using the D flip-flop and external logic □ JK flip-flop □T flip-flops Three major operations that can be performed with a flip-flop: □ Set it to 1 Reset it to 0 Complement its output

Characteristic Tables

Define the logical properties in tabular form

D Flip-Flop

D	Q(t	+	1)	
0	0			Reset
1	1			Set

JK Flip-Flop

J	K	Q(t + 1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

T	7 Flip-Flop									
Т	Q(t + 1)									
0	Q(t)	No change								
1	Q'(t)	Complement								

Characteristic Equations

Algebraically describe the next state
 Can be derived from characteristic tables

□ D flip-flop: Q(t + 1) = D□ JK flip-flop: Q(t + 1) = JQ' + K'Q□ T flip-flop: $Q(t + 1) = T \oplus Q = TQ' + T'Q$

Direct Inputs

- Force the flip-flop to a particular state immediately
 - Independent of clock signal
 - Have higher priority than any other inputs
 - Useful to bring all flip-flops from unknown into known state while power up
- The input that sets the flip-flop to 1 is called preset or direct set
- The input that clears the flip-flop to 0 is called clear or direct reset
- Also called asynchronous set/reset

D

0

Q

R

Sequential Circuit Analysis

- The behavior of a clocked sequential circuit is determined from
 - The inputs
 - □ The outputs
 - □ The state of its flip-flops
- The outputs and the next state are both a function of the inputs and the present state
- To analyze a sequential circuit, we can use
 - □ State equations
 - □ State table
 - State diagram
 - Flip-Flop input equations

State Equations

State Table(transition table)

Enumerate the time sequence of inputs, outputs, and flip-flop states • Also called transition table Similar to list the truth table of state equations Consist of four sections Present state, input, next state, and output **D**A sequential circuit with m flipflops and n inputs need 2^{m+n} rows in the state table

Present state		input	Next state		output	
Α	В	Х	Α	В	У	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

Second Form of State Table

The state table has only three section: present state, next state, and output

The input conditions are enumerated under next state and output sections

Present	Next	Output		
State	x(t)=0	$\mathbf{x}(t)=1$	x(t)=0	x(t)=1
A(t) B(t)	A(t+1)B(t+1)	A(t+1)B(t+1)	y(t)	y(t)
0 0	0 0	0 1	0	0
0 1	0 0	1 1	1	0
10	0 0	1 0	1	0
11	0 0	1 0	1	0

State Diagram

Graphically represent the information in a state table

Circle: a state (with its state value inside)

Directed lines: state transitions (with inputs/outputs above)

Ex: starting from state 00
If the input is 0, it stays at state 00 with output=0
If the input is 1, it goes to state 01 with output=0
The state table is easier to derive from a given logic diagram and state equations
The state diagram is suitable for human interpretation

FIGURE 5.16 State diagram of the circuit of Fig. 5.15

Flip-Flop Input Equations

- To draw the logic diagram of a sequential circuit, we need
 The type of flip-flops
 - A list of Boolean expressions of the combinational circuits
- The Boolean functions for the circuit that generates external outputs is called output equations
- The Boolean functions for the circuit that generates the inputs to flip-flops is flip-flop input equations
- Sometimes called excitation equations
- The flip-flop input equations provide a convenient form for specifying the logic diagram of a sequential circuit
- □ Ex: (Fig. 5-15)

Input: DA=Ax+Bx DB=A'x Output: y=(A+B)x'

Design Procedure

Design procedure of synchronous sequential circuits:

- Derive a state diagram for the circuit from specifications
- 2. Reduce the number of states if necessary
- 3. Assign binary values to the states
- 4. Obtain the binary-coded state table
- 5. Choose the type of flip-flop to be used
- 6. Derive the simplified flip-flop input equations and output equations
- 7. Draw the logic diagram
- Step 4 to 7 can be automated
 - Use HDL synthesis tools

Synthesis Using D Flip-Flops

 Ex: design a circuit that detects a sequence of three or more consecutive 1's in a string of bits coming through an input line

Excitation Tables

Record the flip-flop input conditions that will cause the required transition in STG

Equal to next state equations for D flip-flop

□ For JK flip-flop:

 \Box J=0, K=X: no change (JK=00) or set to zero (JK=01)

 \Box J=1, K=X: toggle (JK=11) or set to one (JK=10)

 \Box J=X, K=1: toggle (JK=11) or set to zero (JK=01)

□ J=X, K=0: no change (JK=00) or set to one (JK=10)

JK	Q(t)	Q(t+1)	J	К	Q(t)	Q(t+1)	Т	Т
F/F	0	0	0	Х	0	0	0	F/F
	0	1	1	Х	0	1	1	
	1	0	Х	1	1	0	1	
	1	1	Х	0	1	1	0	

Synthesis Using JK Flip-Flops

Derive the state table with the excitation inputs

Present State		Input	Next State			Flip-Flop Inputs			
Α	В	Х	Α	В		JA	K _A	J _B	K _B
0	0	0	0	0		0	Х	0	Х
0	0	1	0	1		0	Х	1	Х
0	1	0	1	0		1	Х	Х	1
0	1	1	0	1		0	Х	Х	0
1	0	0	1	0		Х	0	0	Х
1	0	1	1	1		Х	0	1	Х
1	1	0	1	1		Х	0	Х	0
1	1	1	0	0		Х	1	Х	1

Synthesis Using JK Flip-Flops

В

10

1

 m_2

 m_6

11

 m_3

 m_7

х

1

Synthesis using T Flip-Flop

• 3-bit binary counter

Pre	sent S	State	Ne	ext Sta	ate	Flip-Flop Inputs			
A2	A1	A 0	A2	A1	A0	T _{A2}	T _{A1}	T _{A0}	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	1	1	0	0	1	1	
1	1	0	1	1	1	0	0	1	
1	1	1	0	0	0	1	1	1	

T flip-Flop for 3-bit binary counter

FIGURE 5.34:Logic diagram of three-bit binary counter

Home work 1

• A sequential circuit has one flip-flop *Q*, two inputs *x* and *y*, and one output *S*. It consists of a fulladder circuit connected to a *D* flip-flop, as shown in Fig. P5.7. Derive the state table and state diagram of the sequential circuit.

Home work 2

Design a sequential circuit with two *D* flip-flops *A* and *B*, and one input *x*. When x = 0, the state of the circuit remains the same. When x = 1, the circuit goes through the state transitions from 00 to 01, to 11, to 10, back to 00, and repeats.

Home work 3

Design a sequential circuit with two JK flip-flops A and B and two inputs E and F. If E = 0, the circuit remains in the same state regardless of the value of F. When E = 1and F = 1, the circuit goes through the state transitions from 00 to 01, to 10, to 11, back to 00, and repeats. When E = 1 and F = 0, the circuit goes through the state transitions from 00 to 11, to 10, to 01, back to 00, and repeats

reading

- M. Morris Mano, Michael D. Ciletti "Digital Design With an Introduction to the Verilog HDL" FIFTH EDITION
 - Sections: 5.4 ,5.5(pages 198-214)